2N918 (SILICON) ## www.datasheetcatalog.com ## ALSO AVAILABLE AS JAN AND HI-REL UNITS NPN silicon annular transistors with high reliability designed for use in VHF and UHF amplifier, mixer and oscillator applications. Active elements isolated from case (TO-72) ### MAXIMUM RATINGS | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------|-------| | Collector-Base Voltage | v _{CB} | 30 | Vdc | | Collector-Emitter Voltage | V _{CEO} | 15 | Vdc | | Emitter-Base Voltage | V _{EB} | 3.0 | Vdc | | Collector Current | ^I C | 50 | mAdc | | Total Device Dissipation @ $T_C = 25^{\circ}C$ | P _D | 300 | mW | | Derating Factor Above 25°C | | 1.71 | mW/°C | | Total Device Dissipation @ $T_A = 25^{\circ}C$ | $^{\mathrm{P}}\mathrm{_{D}}$ | 200 | mW | | Derating Factor Above 25°C | _ | 1.14 | mW/°C | | Operating & Storage Junction Temperature Range | T _J , T _{stg} | -65 to +200 | °C | TABLE 1 : GROUP A INSPECTION (T_A = 25°C ± 3°C unless otherwise noted) | Evanination of Took | | | Mil-Std-750 | Chal | Limits | | I I -: A | *1.700 | | |--|--------------------------|-----|---------------------|----------------------|------------|-----|---------------|--------|--| | Examination or | Examination or Test | | Method | Symbol | Min | Max | Unit | *LTPD | | | SUBGROUP 1 | | | | | | | | | | | Visual and Mechanical Examination | | | 2071 - | - | - | - | - | 10 | | | SUBGROUP 2 | | | | | | | | | | | Collector-Base Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$ | All Types | | 3036
Condition D | СВО | - | 10 | n A dc | | | | Collector-Base Breakdown Voltage (I_C = 1.0 μAdc , I_E = 0) | All Types | ¥73 | 3001
Condition D | вусво | 30 | - | Vdc | | | | Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$ | All Types | | 3026
Condition D | BV _{EBO} | 3.0 | - | Vdc | | | | Collector-Emitter Breakdown Voltage $(I_C = 3.0 \text{ mAdc}, I_B = 0)$ | All Types | | 3011
Condition D | BV _{CEO} | 15 | - | Vdc | 5 | | | DC Current Gain
$(V_{CE} = 10 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$ | JAN2N918 | | 3076 | h _{FE} | 20 | - | - * | | | | $(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 3.0 \text{ mAdc})$
$(V_{CE} = 10 \text{ Vdc}, I_{C} = 500 \mu\text{Adc})$ | JA N2N918 ‡
JA N2N918 | | | | 20 t
10 | 200 | | | | | Base-Emitter Voltage
$(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ | All Types | | 3066
Condition A | v _{BE} | - | 1.0 | Vdc | | | | Collector-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ | All Types | | 3071 | V _{CE(sat)} | - | 0.4 | Vdc | | | ## 2N918, JAN 2N918 (continued) TARLE 1 · GROUP A INSPECTION (T. = 25°C ± 3°C unless otherwise noted) (continued) | Examination or Test | | | Mil-Std-750 | Symbol | Limits | | Unit | *LTPD | | |---|-----------|-----------|-------------|--------------------------------|---------|-----|------|-------|--| | | | | Method | | Min Max | | | | | | SUBGROUP 3 | | | | | | | | e i | | | Output Capacitance
(V _{CB} = 10 Vdc, I _E = 0, | | | 3236 | c _{ob} | | | pF | 1 | | | $f \ge 0.1 \text{ MHz } \& \le 1.0 \text{ MHz})$ | All Types | | | | - | 1.7 | | | | | $(V_{CB} = 0, I_{E} = 0, f \ge 0.1 \text{ MHz} \& \le 1.0 \text{ MHz})$ | All Types | | | | - | 3.0 | | | | | Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, | | | 3240 | C _{ib} | | 2.0 | pF | 3 | | | f ≥ 0.1 MHz & ≤ 1.0 MHz) | All Types | | (Note 1) | | - | 2.0 | | 1 | | | SUBGROUP 4 | | | | | | | | | | | Small-Signal Current Gain (V _{CE} = 10 Vdc, I _C = 4.0 mAdc, | | | 3306 | $ h_{fe} $ | | | • | | | | f = 100 MHz) | All Types | | | | 6.0 | - , | | | | | Small-Signal Amplifier Gain $(V_{CC} = 12 \text{ Vdc}, I_{C} = 6.0 \text{ mAdc},$ | | | (Figure 2) | G _{pe} | | | dB | | | | f = 200 MHz | All Types | | | | 15 | - | | 10 | | | Collector-Base Time Constant
(V _{CB} = 10 Vdc, I _E = -4.0 mAdc,
f = 79.8 MHz) | JAN2N918 | * | - | r _b 'C _c | | 25 | ps | | | | Noise Figure | JANZNETO | | (Note 2) | NF | | | dB | | | | (V _{CE} = 6.0 Vdc, I _C = 1.0 mAdc,
R _G = 400 ohms, f = 60 MHz) | All Types | | , | | | 6.0 | | | | | · · | | | (Note 3) | р | | | mW | | | | Oscillator Power Output (V _{CB} = 15 Vdc, I _C = 8.0 mAdc, | | | (Note 0) | Pout | | | | | | | f = 500 MHz) | All Types | | (27-1-0) | | 30 | - | % | | | | Collector-Efficiency Test (V _{CB} = 15 Vdc, I _C = 8.0 mAdc, | | | (Note 3) | η | | | 70 | | | | f = 500 MHz) | All Types | | | | 25 | - | 9 | | | | SUBGROUP 5 (Note 4) | | | (Note 4) | | | - | | | | | High Temperature Operation | | | | | | | | | | | Collector-Base Cutoff Current (V _{CB} = 15 Vdc, I _E = 0, | | | 3036 | СВО | | | μAdc | | | | $T_A = 150^{\circ} C$ | All Types | | Condition D | | - | 1.0 | | | | | Low Temperature Operation | | а в | | | | | | | | | DC Current Gain $(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 3.0 \text{ mAdc},$ | | 24 | 3076 | h _{FE} | | | | | | | $T_A = -55^{\circ} C$ | JAN2N918 | 101 T 101 | (Note 4) | | 10 | - | | | | ^{*}Applies to Meg-A-Life II and Mil Units Only #### NOTES: - This test shall be in accordance with Method 3240 of MIL-STD-750 except that the output capacitor is omitted. - Noise Figure shall be measured using a HP 342A NF Meter in accordance with HP 342A pertinent test procedure or by use of a suitable equivalent test-equipment circuit and procedure. - Sample units shall be allowed to return to and be stabilized at room ambient temperature prior to being subjected to the Low-Temperature Operation test. - Test Measurement shall be made after thermal equilibrium has been reached at the temperature specified. - 5. All applicable end-point test measurements shall be made within four hours after the particular sample units have been subjected to the required physical-mechanical or environmental test(s). This requirement is not applicable to measurements specified to be made during (subjection of sample units) a physical-mechanical or environmental test, and shall not be applicable where otherwise specified for life test(s). - There shall be no evidence of flaking, pitting, or other visible signs of corrosion on sample units, upon examination without magnifications, after subjection to test. - Per MIL-STD-202, Method 112, Test Condition C, Procedure 111a and Test Condition A for Gross Leaks. ## 2N918, JAN 2N918 (continued) TABLE II: GROUP B INSPECTION | Principles in Total | Mil-Std-750 | CL.I | Lir | nits | Unit | LTPD | | |--|--------------------|------------------|---------|----------------------|--------------------|--------------|--| | Examination or Test | Method | Symbol | Min Max | | Unit | LIPU | | | SUBGROUP 1 | | | | | | | | | Physical Dimensions | 2066 | - | | - | - | 20 | | | SUBGROUP 2 | | | - | | | | | | | 2026 | | | | | | | | Solderability Townstatus Custing | 1051 | - | - | - | - |] | | | Temperature Cycling | Condition C | - | - | - | - | | | | Thermal Shock (Glass Strain) | 1056 | | | | | | | | | Condition A | - | - | - | - | | | | Seal (Leak Rate) | (Note 7) | - | | | | | | | Moisture Resistance (No Initial Conditioning) | 1021 | | - | - | - | } 10 | | | End-Point Tests: (Note 5) | | | | | | | | | Collector-Base Cutoff Current | 3036 | I _{CBO} | | 10 | nAdc | | | | $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$ | Condition D | | - | 10 | | | | | DC Current Gain | 3076 | h _{FE} | | | - | | | | $(I_C = 3.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ | | 12 | 20 | 200 | | , | | | UBGROUP 3 | | | | | | | | | Shock | 2016 | _ | _ | - | _ | ١ | | | (1500 G, 0.5 ms, 5 blows each, | Non-operating | | | | | | | | Orientations X_1 , Y_1 , Y_2 , Z_1 ; Total = 20 blows) | ye ² 4. | | | | | | | | Vibration, Variable Frequency | 2056 | | | | - | -jyle - 1 | | | | 2046 | 77 | _ | | | | | | Vibration Fatigue (20 G) | Non-operating | - | - | | | 10 | | | Constant Acceleration (Centrifuge) | 2006 | _ | _ | - | - | | | | $(20,000 \text{ G}, \text{ Orientations } \mathbf{X}_1, \mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Z}_1)$ | 0.00 | | | | | | | | | | | | | | | | | End-Point Tests: Same as Subgroup 2 (Note 5) | | | | | | J. | | | SUBGROUP 4 | | | | † | | | | | | 2036 | | | | | 1 | | | Lead Fatigue | Condition E | - | - | - | | | | | End-Point Tests: | | | | | atm | 15 | | | Seal (Notes 5 and 7) | | | - | 5x10 ⁻⁷ | cm ³ /s | | | | UBGROUP 5 | | | | | | | | | Salt Atmosphere (Corrosion) (Note 6) | 1041 | | _ | - | _ | ١ | | | | 1011 | | | | | 20 | | | End-Point Tests: | | | | | | [20] | | | Same as Subgroup 2 | - | | | · · | | 3. | | | UBGROUP 6 | 7. | | | | 3 | | | | High Temperature Life (Non-Operating) | 1031 | - | - | - | - | λ = 15 | | | $(T_{stg} = +200^{\circ}C, min)$ | Non-operating | | 100 | | 1.0 | - 0 | | | End-Point Tests: (Note 5) | 19. 10. | | | | | | | | Collector-Base Cutoff Current | 3036 | СВО | | | nAdc | | | | (V _{CB} = 15 Vdc, I _E = 0) | Condition D | СВО | - | 20 | | 1.74 | | | DC Current Gain | 3076 | h _{FE} | 23,1 | | - | | | | $(I_C = 3.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ | | | | ± 25% | | | | | | | | | of Group
A Limits | | * 'Y 11 (14) | | | UBGROUP 7 | | | | | | e 9 | | | | 1026 | _ | _ | | 67 | λ = 15 | | | Steady State Operation Life
$(P_T = 200 \text{ mW}, I_C = 20 \text{ mAdc}, T_A = 25^{\circ}\text{C} \pm 3^{\circ}\text{C})$ | 1020 | _ | - | | | 7 - 10 | | | | | | | | | | | | End-Point Tests: (Note 5) | | | | | | 1120 20 | | | Same as Subgroup 6 | | | | | | | | ## 2N918, JAN 2N918 (continued) TABLE III: CONDITIONING and SCREENING | Procedure | Symbol | Mil-Std-750
Method | Conditions | Limits | |--|----------------------|-----------------------|---|--------------------------------| | BURN-IN at rated Power for 96 hours | - | - | $V_{CE} = 10 \text{ Vdc}, T_A = 25^{\circ} \text{ C}$ | - | | ELECTRICAL SCREENS After Burn-In DC Current Gain ${ m Changes}$ in ${ m h}_{ m FE}$ before and after | Δh _{FE} | 3076 | I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc, Pulsed* | ± 20% Within
Group A Limits | | Burn-In, measured at stated conditions. | | , | , | | | Collector-Base Cutoff Current | СВО | 3036
Condition D | V _{CB} = 15 Vdc | | | Collector-Emitter Saturation Voltage | V _{CE(sat)} | 3071 | $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}; \text{ Pulsed*}$ | Group A Limits | | Base-Emitter Saturation Voltage | V _{BE(sat)} | 3066
Condition A | I _C = 10 mA, I _B = 1.0 mA; Pulsed* | | ^{*} Pulse Width ≤ 300 μs. Duty Cycle ≤ 2.0% The test fixture shall consist of a 60 MHz tuned amplifier and suitable biasing circuits. It should be constructed utilizing good very-high-frequency design techniques. The effective source susceptance should be tuned for each device being tested to obtain minimum noise figure. Note that because the HP 343A has a 50-ohm output resistance, a suitable impedance transformer must be used to obtain an effective source conductance of 2.5 mmho at the transistor with minimum losses. ## www.datasheetcatalog.com FIGURE 2 - NEUTRALIZED 200 MHz POWER AMPLIFIER GAIN TEST CIRCUIT #### **NEUTRALIZATION PROCEDURE:** - A Connect 200 MHz signal generator (with 50 ohm output impedance) to input terminals of amplifier, and connect 50 ohm RF voltmeter to output terminals of amplifier. - B Apply V_{EE} and V_{CC} to obtain specified test conditions. - C Adjust output of signal generator to approximately 10 millivolts and tune C1 and C2 for maximum output. - D Interchange connections to signal generator and RF voltmeter and with sufficient signal applied at output terminals, tune L2 for minimum indication on RF-voltmeter. - E Repeat this sequence until optimum settings are obtained for all variables. #### CIRCUIT COMPONENT INFORMATION: C1: 3-12 pF C2: 1.5-7.5 pF - 2 to 1 3 1/2 turns #16 AWG 5/16" ID, 7/16" length, turns ratio L2: $0.4 \cdot 0.65 \, \mu H$ Miller #4303 (or equal) L3: 8 turns #16 AWG 1/8" ID, length, turns ratio - 8 *External interlead shield to isolate collector lead from emitter and base leads. #### FIGURE 3 — 500 MHz OSCILLATOR TEST CIRCUIT #### OSCILLATOR ADJUSTMENT PROCEDURE: Measurements of Pout shall be made in this circuit or a suitable equivalent. The circuit adjustment procedure is as follows: A - Set V_{CC} and V_{EE} to obtain specified test conditions. B - Adjust stub tuner to obtain maximum output at specified frequency of oscillation. C - Check Ic and reset if necessary. D - Read Pout. Note: Collector efficiency (7), may be determined as follows: $$\eta$$ in % = $\frac{P_{out}}{120}$ x 100 Where Pout is in milliwatts. ### CIRCUIT COMPONENT INFORMATION: 2 turns #16 AWG, 3/8" OD, 1 1/4" length 9 turns #22 AWG, 3/16" OD, 1/2" length Capacitance values are in pF. Double Stub Tuner consists of the following commercially available components. 2 GR Type 874 TEE 1 GR Type 874-D20 Adjustable Stub 1 GR Type 874-LA Adjustable Line 1 GR Type 874-WN3 Short-Circuit Termination (or equivalents)