

2N918 (SILICON)

www.datasheetcatalog.com

ALSO AVAILABLE AS JAN AND HI-REL UNITS

NPN silicon annular transistors with high reliability designed for use in VHF and UHF amplifier, mixer and oscillator applications.

Active elements isolated from case

(TO-72)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	v _{CB}	30	Vdc
Collector-Emitter Voltage	V _{CEO}	15	Vdc
Emitter-Base Voltage	V _{EB}	3.0	Vdc
Collector Current	^I C	50	mAdc
Total Device Dissipation @ $T_C = 25^{\circ}C$	P _D	300	mW
Derating Factor Above 25°C		1.71	mW/°C
Total Device Dissipation @ $T_A = 25^{\circ}C$	$^{\mathrm{P}}\mathrm{_{D}}$	200	mW
Derating Factor Above 25°C	_	1.14	mW/°C
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

TABLE 1 : GROUP A INSPECTION (T_A = 25°C ± 3°C unless otherwise noted)

Evanination of Took			Mil-Std-750	Chal	Limits		I I -: A	*1.700	
Examination or	Examination or Test		Method	Symbol	Min	Max	Unit	*LTPD	
SUBGROUP 1									
Visual and Mechanical Examination			2071 -	-	-	-	-	10	
SUBGROUP 2									
Collector-Base Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$	All Types		3036 Condition D	СВО	-	10	n A dc		
Collector-Base Breakdown Voltage (I_C = 1.0 μAdc , I_E = 0)	All Types	¥73	3001 Condition D	вусво	30	-	Vdc		
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	All Types		3026 Condition D	BV _{EBO}	3.0	-	Vdc		
Collector-Emitter Breakdown Voltage $(I_C = 3.0 \text{ mAdc}, I_B = 0)$	All Types		3011 Condition D	BV _{CEO}	15	-	Vdc	5	
DC Current Gain $(V_{CE} = 10 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$	JAN2N918		3076	h _{FE}	20	-	- *		
$(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 3.0 \text{ mAdc})$ $(V_{CE} = 10 \text{ Vdc}, I_{C} = 500 \mu\text{Adc})$	JA N2N918 ‡ JA N2N918				20 t 10	200			
Base-Emitter Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	All Types		3066 Condition A	v _{BE}	-	1.0	Vdc		
Collector-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$	All Types		3071	V _{CE(sat)}	-	0.4	Vdc		

2N918, JAN 2N918 (continued)

TARLE 1 · GROUP A INSPECTION (T. = 25°C ± 3°C unless otherwise noted) (continued)

Examination or Test			Mil-Std-750	Symbol	Limits		Unit	*LTPD	
			Method		Min Max				
SUBGROUP 3								e i	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0,			3236	c _{ob}			pF	1	
$f \ge 0.1 \text{ MHz } \& \le 1.0 \text{ MHz})$	All Types				-	1.7			
$(V_{CB} = 0, I_{E} = 0, f \ge 0.1 \text{ MHz} \& \le 1.0 \text{ MHz})$	All Types				-	3.0			
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0,			3240	C _{ib}		2.0	pF	3	
f ≥ 0.1 MHz & ≤ 1.0 MHz)	All Types		(Note 1)		-	2.0		1	
SUBGROUP 4									
Small-Signal Current Gain (V _{CE} = 10 Vdc, I _C = 4.0 mAdc,			3306	$ h_{fe} $			•		
f = 100 MHz)	All Types				6.0	- ,			
Small-Signal Amplifier Gain $(V_{CC} = 12 \text{ Vdc}, I_{C} = 6.0 \text{ mAdc},$			(Figure 2)	G _{pe}			dB		
f = 200 MHz	All Types				15	-		10	
Collector-Base Time Constant (V _{CB} = 10 Vdc, I _E = -4.0 mAdc, f = 79.8 MHz)	JAN2N918	*	-	r _b 'C _c		25	ps		
Noise Figure	JANZNETO		(Note 2)	NF			dB		
(V _{CE} = 6.0 Vdc, I _C = 1.0 mAdc, R _G = 400 ohms, f = 60 MHz)	All Types		,			6.0			
· ·			(Note 3)	р			mW		
Oscillator Power Output (V _{CB} = 15 Vdc, I _C = 8.0 mAdc,			(Note 0)	Pout					
f = 500 MHz)	All Types		(27-1-0)		30	-	%		
Collector-Efficiency Test (V _{CB} = 15 Vdc, I _C = 8.0 mAdc,			(Note 3)	η			70		
f = 500 MHz)	All Types				25	-	9		
SUBGROUP 5 (Note 4)			(Note 4)			-			
High Temperature Operation									
Collector-Base Cutoff Current (V _{CB} = 15 Vdc, I _E = 0,			3036	СВО			μAdc		
$T_A = 150^{\circ} C$	All Types		Condition D		-	1.0			
Low Temperature Operation		а в							
DC Current Gain $(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 3.0 \text{ mAdc},$		24	3076	h _{FE}					
$T_A = -55^{\circ} C$	JAN2N918	101 T 101	(Note 4)		10	-			

^{*}Applies to Meg-A-Life II and Mil Units Only

NOTES:

- This test shall be in accordance with Method 3240 of MIL-STD-750 except that the output capacitor is omitted.
- Noise Figure shall be measured using a HP 342A NF Meter in accordance with HP 342A pertinent test procedure or by use of a suitable equivalent test-equipment circuit and procedure.
- Sample units shall be allowed to return to and be stabilized at room ambient temperature prior to being subjected to the Low-Temperature Operation test.
- Test Measurement shall be made after thermal equilibrium has been reached at the temperature specified.
- 5. All applicable end-point test measurements shall be made within four hours after the particular sample units have been subjected to the required physical-mechanical or environmental test(s). This requirement is not applicable to measurements specified to be made during (subjection of sample units) a physical-mechanical or environmental test, and shall not be applicable where otherwise specified for life test(s).
- There shall be no evidence of flaking, pitting, or other visible signs of corrosion on sample units, upon examination without magnifications, after subjection to test.
- Per MIL-STD-202, Method 112, Test Condition C, Procedure 111a and Test Condition A for Gross Leaks.

2N918, JAN 2N918 (continued)

TABLE II: GROUP B INSPECTION

Principles in Total	Mil-Std-750	CL.I	Lir	nits	Unit	LTPD	
Examination or Test	Method	Symbol	Min Max		Unit	LIPU	
SUBGROUP 1							
Physical Dimensions	2066	-		-	-	20	
SUBGROUP 2			-				
	2026						
Solderability Townstatus Custing	1051	-	-	-	-]	
Temperature Cycling	Condition C	-	-	-	-		
Thermal Shock (Glass Strain)	1056						
	Condition A	-	-	-	-		
Seal (Leak Rate)	(Note 7)	-					
Moisture Resistance (No Initial Conditioning)	1021		-	-	-	} 10	
End-Point Tests: (Note 5)							
Collector-Base Cutoff Current	3036	I _{CBO}		10	nAdc		
$(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$	Condition D		-	10			
DC Current Gain	3076	h _{FE}			-		
$(I_C = 3.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$		12	20	200		,	
UBGROUP 3							
Shock	2016	_	_	-	_	١	
(1500 G, 0.5 ms, 5 blows each,	Non-operating						
Orientations X_1 , Y_1 , Y_2 , Z_1 ; Total = 20 blows)	ye ² 4.						
Vibration, Variable Frequency	2056				-	-jyle - 1	
	2046	77	_				
Vibration Fatigue (20 G)	Non-operating	-	-			10	
Constant Acceleration (Centrifuge)	2006	_	_	-	-		
$(20,000 \text{ G}, \text{ Orientations } \mathbf{X}_1, \mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Z}_1)$	0.00						
End-Point Tests: Same as Subgroup 2 (Note 5)						J.	
SUBGROUP 4	 			†			
	2036					1	
Lead Fatigue	Condition E	-	-	-			
End-Point Tests:					atm	15	
Seal (Notes 5 and 7)			-	5x10 ⁻⁷	cm ³ /s		
UBGROUP 5							
Salt Atmosphere (Corrosion) (Note 6)	1041		_	-	_	١	
	1011					20	
End-Point Tests:						[20]	
Same as Subgroup 2	-			· ·		3.	
UBGROUP 6	7.				3		
High Temperature Life (Non-Operating)	1031	-	-	-	-	λ = 15	
$(T_{stg} = +200^{\circ}C, min)$	Non-operating		100		1.0	- 0	
End-Point Tests: (Note 5)	19. 10.						
Collector-Base Cutoff Current	3036	СВО			nAdc		
(V _{CB} = 15 Vdc, I _E = 0)	Condition D	СВО	-	20		1.74	
DC Current Gain	3076	h _{FE}	23,1		-		
$(I_C = 3.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$				± 25%			
				of Group A Limits		* 'Y 11 (14)	
UBGROUP 7						e 9	
	1026	_	_		67	λ = 15	
Steady State Operation Life $(P_T = 200 \text{ mW}, I_C = 20 \text{ mAdc}, T_A = 25^{\circ}\text{C} \pm 3^{\circ}\text{C})$	1020	_	-			7 - 10	
End-Point Tests: (Note 5)						1120 20	
Same as Subgroup 6							

2N918, JAN 2N918 (continued)

TABLE III: CONDITIONING and SCREENING

Procedure	Symbol	Mil-Std-750 Method	Conditions	Limits
BURN-IN at rated Power for 96 hours	-	-	$V_{CE} = 10 \text{ Vdc}, T_A = 25^{\circ} \text{ C}$	-
ELECTRICAL SCREENS After Burn-In DC Current Gain ${ m Changes}$ in ${ m h}_{ m FE}$ before and after	Δh _{FE}	3076	I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc, Pulsed*	± 20% Within Group A Limits
Burn-In, measured at stated conditions.		,	,	
Collector-Base Cutoff Current	СВО	3036 Condition D	V _{CB} = 15 Vdc	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	3071	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}; \text{ Pulsed*}$	Group A Limits
Base-Emitter Saturation Voltage	V _{BE(sat)}	3066 Condition A	I _C = 10 mA, I _B = 1.0 mA; Pulsed*	

^{*} Pulse Width ≤ 300 μs. Duty Cycle ≤ 2.0%

The test fixture shall consist of a 60 MHz tuned amplifier and suitable biasing circuits. It should be constructed utilizing good very-high-frequency design techniques.

The effective source susceptance should be tuned for each device being

tested to obtain minimum noise figure. Note that because the HP 343A has a 50-ohm output resistance, a suitable impedance transformer must be used to obtain an effective source conductance of 2.5 mmho at the transistor with minimum losses.

www.datasheetcatalog.com

FIGURE 2 - NEUTRALIZED 200 MHz POWER AMPLIFIER GAIN TEST CIRCUIT

NEUTRALIZATION PROCEDURE:

- A Connect 200 MHz signal generator (with 50 ohm output impedance) to input terminals of amplifier, and connect 50 ohm RF voltmeter to output terminals of amplifier.
- B Apply V_{EE} and V_{CC} to obtain specified test conditions.
- C Adjust output of signal generator to approximately 10 millivolts and tune C1 and C2 for maximum output.
- D Interchange connections to signal generator and RF voltmeter and with sufficient signal applied at output terminals, tune L2 for minimum indication on RF-voltmeter.
- E Repeat this sequence until optimum settings are obtained for all variables.

CIRCUIT COMPONENT INFORMATION:

C1: 3-12 pF

C2: 1.5-7.5 pF

- 2 to 1

3 1/2 turns #16 AWG 5/16" ID, 7/16" length, turns ratio L2: $0.4 \cdot 0.65 \, \mu H$ Miller #4303 (or equal)

L3: 8 turns #16 AWG 1/8" ID, length, turns ratio - 8

*External interlead shield to isolate collector lead from emitter and base leads.

FIGURE 3 — 500 MHz OSCILLATOR TEST CIRCUIT

OSCILLATOR ADJUSTMENT PROCEDURE:

Measurements of Pout shall be made in this circuit or a suitable equivalent. The circuit adjustment procedure is as follows:

A - Set V_{CC} and V_{EE} to obtain specified test conditions.

B - Adjust stub tuner to obtain maximum output at specified frequency of oscillation.

C - Check Ic and reset if necessary.

D - Read Pout.

Note: Collector efficiency (7), may be determined as follows:

$$\eta$$
 in % = $\frac{P_{out}}{120}$ x 100

Where Pout is in milliwatts.

CIRCUIT COMPONENT INFORMATION:

2 turns #16 AWG, 3/8" OD, 1 1/4" length

9 turns #22 AWG, 3/16" OD, 1/2" length

Capacitance values are in pF.

Double Stub Tuner consists of the following commercially available components. 2 GR Type 874 TEE 1 GR Type 874-D20 Adjustable Stub

1 GR Type 874-LA Adjustable

Line
1 GR Type 874-WN3 Short-Circuit Termination

(or equivalents)